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The incomplete-Cholesky (IC) preconditioner is often implemented into solving linear system derived from finite element method 
(FEM). However, when many thin elements are included in an analyzed mesh, the convergence characteristic might be deteriorated. At 
that time, IC preconditioner with fill-in makes the convergence characteristics of linear solver much better. Furthermore, when the 
blocked strategy is introduced into IC with fill-in, the fill-in search, forward substitution, and backward substitution is successfully 
parallelized. This paper shows the validity of block IC with fill-in on linear systems arising in FEM with many flat elements. 
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I. INTRODUCTION 

HE incomplete-Cholesky-preconditioned conjugate 
gradient (ICCG) method [1] is widely used for sparse 

matrix solver in electromagnetic field analysis based on finite 
element method (FEM). When many thin elements are 
included in an analyzed mesh, the convergence of ICCG might 
be deteriorated. Therefore, a powerful preconditioner 
exceeding conventional IC is desired for fast electromagnetic 
field analysis. 

One of simple techniques to improve the convergence is the 
consideration of fill-in elements [2] in IC preconditioner. 
However, the exploring fill-in elements is high cost. Then, this 
overhead for preconditioner can be reduced by parallelization 
technique such as block preconditioner [3]. However, the 
performance of block IC with fill-in has not been particularly 
investigated on ill-conditioned system derived from FEM with 
flat elements. 

This paper demonstrates the validity of block IC with fill-in 
for solving symmetric linear systems arising in magnetic field 
analysis and frequency-domain eddy current problem. 
Furthermore, the optimal fill-in level was examined through 
performance evaluation of higher order fill-in. 

II. BLOCK INCOMPLETE FACTORIZATION PRECONDITIONER 

A. Parallelization of Linear Solver on Distributed Memory 
Parallel computer 
In this paper, to efficiently parallelize block IC with fill-in, 

this preconditioner is parallelized with a distributed memory 
parallel computer. Fig. 1 shows the outline of parallelization 
method for the distributed processing. The global matrix 
information is sent to each process before solving linear 
equation as shown in Fig. 1 (a). Next, the blocked strategy is 
applied to local matrix on each process as shown in Fig. 1 (b). 
The fill-in search, IC factorization, a forward substitution, and 
a backward substitution can be parallelized block by block. 

B. Block IC Preconditioner with Fill-in 
The fill-in technique is performed by procedure shown in 

[2]. First, the fill-in level p, which describes the criterion for 

determining fill-in components, is previously configured. Next, 
the initial level qi j in the position (i, j) is defined by 

0 (if 0)
(otherwise)

i j
i j

aq   ,
                                                    (1) 

where ai j denotes the component of coefficient matrix. Next, 
all qi j are updated by 

min{ , 1} (0 )i j i j i k j kq q q q k j     .                         (2) 

This modification of qi j can be achieved by the procedure of 
Gaussian elimination. When the qi j becomes larger than p, qi j 
is set to  ; otherwise the (i, j)-th element becomes fill-in 
entry. Fig. 2 shows the example of fill-in position on block IC. 
In Fig. 2, p is set to 2. For example, q42 is calculated as 
follows: 

42 42 41 21min{ , 1} (0 2)

min{ , 0 0 1} 1

q q q q k    
     .

                      (3) 

Similarly, q43 is obtained as follows: 

43 43 42 32min{ , 1} (0 3)

min{ , 1 0 1} 2

q q q q k    
     .

                      (4) 

Consequently, because the condition 42 2q   and 43 2q   are 
satisfied, these entries become fill-in elements. The other fill-
in entries are determined by procedure similar to (3) and (4). 

          
(a)                                                 (b) 

Fig. 1.  Outline of parallelization method for distributed processing. (a) 
Allocation of matrix information to each process. (b) Blocked strategy for 
preconditioner. 

 
Fig. 2.  Example of fill-in position on block IC(2). 
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III. NUMERICAL RESULTS AND DISCUSSION 

Fig. 3 shows analyzed models. First, the laminated core 
model proposed by the institute of electrical engineers of 
Japan (IEEJ) [4] is analyzed. The direction of lamination is x-
axis with 96 % lamination of iron core, and each plate is 
discretized by 4 layers. Next, Fig. 3 (b) shows the induction 
heating (IH) model. The frying pan is discretized by 40 layers 
with thickness of 2 mm, and  is set to 5.0 107 S/m. The 
frequency of the current in coils is set to 90 kHz. Table I lists 
the specifications of analyzed models. CG is the convergence 
criterion for CG method. All nonzero components of matrix 
are stored with the compressed row storage (CRS). The 
hardware platform is composed of two CPUs, both of which 
are Intel Xeon E5-2687W v2 (3.4 GHz, 8 cores) with 32 GB 
RAM. The message passing interface (MPI) is adopted as the 
API for parallelization. 

Fig. 4 shows the nonzero distribution of coefficient matrices. 
While the nonzero entries are distributed around diagonal in 
IEEJ laminated core model, the bandwidth of coefficient 
matrix is large in IH cooker. Table II and III lists the elapsed 
time for fill-in search. Here, C1u and CTu denote the forward 
substation and backward substitution, respectively. Because 
the fill-in elements are increased with considering higher order 
fill-in, the elapsed time for fill-in search, IC factorization, and 
preconditioning is increased. 

Table IV shows the elapsed time for parallelized CG 
method in IEEJ laminated core model. IC(p) represents the IC 
preconditioner with fill-level p.  Np is the degree of 
parallelization. Because some nonzero components are 
excluded from preconditioner, the convergence of block IC(0) 
is slower than that of sequential IC(0). On the other hand, the 
block IC(1) has the ability to improve the convergence in 
comparison with block IC(0). In block IC(2) and block IC(3), 
although the number of CG iterations is decreased by 
consideration of higher order fill-in, total elapsed time could 
not be reduced.  This is caused by the overhead derived from  

      
(a)                                                      (b) 

Fig. 3.  Analyzed models. (a) IEEJ laminated core model. (b) IH cooker. 

TABLE I 
SPECIFICATIONS OF ANALYZED MODELS 
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Fig. 4.  Nonzero distribution. (a) IEEJ laminated core model. (b) IH cooker. 

the fill-in strategy.  As shown in Table II, when higher level is 
used as criterion for fill-in position, the cost for determining 
the place of fill-in is increased. At the same time, because 
higher fill-in elements are newly added to preconditioner, the 
increment of elapsed time for forward and backward 
substitution is occurred. Consequently, the further acceleration 
could not be realized in block IC(2) and block IC(3). 

Table V list the performance of parallelized conjugate 
orthogonal conjugate gradient (COCG) [5]. The convergence 
of block IC with fill-in is drastically improved in comparison 
with block IC(0). Consequently, the further speed-up could be 
achieved. The block IC(1) is the most effective for reducing 
the elapsed time. Therefore, the optimal p would be 1 from the 
practical viewpoint. In the full paper, the performance of block 
IC(1) on large scale problem will be reported. 

TABLE II 
RESULTANT PERFORMANCE OF BLOCK IC(p) IN IEEJ LAMINATED CORE 

MODEL (16 PROCESS) 

 
TABLE III 

RESULTANT PERFORMANCE OF BLOCK IC(p) IN IH COOKER (16 PROCESS) 

 
TABLE IV 

ELAPSED TIME OF PARALLELIZED CG METHOD IN IEEJ LAMINATED CORE 

MODEL (shift parameter: 1.05) 

 
TABLE V 

ELAPSED TIME OF PARALLELIZED COCG METHOD IN IH COOKER (shift 
parameter: 1.1) 
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model discret. formul.
number of
elements

matrix
type DoF nonzero

IEEJ
laminated core

1st-
hexa A 290,241 real 842,384 26,223,568 106

IH cooker 1st-
hexa 794,640 complex 2,742,590 129,062,078 107

CG

A

p number of fill-in elapsed time for
fill-in search [s]

elapsed time 
for IC [s]

elapsed time
for C1u [s]
(1 iteration)

elapsed time
for CTu [s]
(1 iteration)

0 － － 0.01 0.001 0.001
1 14,960,764  (1.00) 16.3  (1.00) 0.04 0.002 0.002
2 23,216,728  (1.55) 20.6  (1.26) 0.08 0.003 0.003
3 35,507,978  (2.37) 26.4  (1.61) 0.10 0.004 0.004

p number of fill-in elapsed time for
fill-in search [s]

elapsed time 
for IC [s]

elapsed time
for C1u [s]
(1 iteration)

elapsed time
for CTu [s]
(1 iteration)

0 － － 0.2 0.020 0.019
1 155,862,560  (1.00) 196.9  (1.00) 1.3 0.059 0.056
2 310,211,102  (1.99) 308.2  (1.56) 3.3 0.099 0.099
3 506,868,558  (3.25) 494.3  (2.51) 7.4 0.140 0.140

precond. Np linear it.
elapsed time [s]

precond. Au C1u CTu total (TNp)

IC(0) 1 15,142 0.3 348.2 191.6 203.1 826.0

Block IC(0) 16 16,037 0.01 86.3 26.1 18.8 242.8

Block IC(1) 16 13,285 16.4 71.0 37.7 31.4 266.8

Block IC(2) 16 12,833 20.7 68.7 45.9 39.9 275.2

Block IC(3) 16 12,451 26.5 66.4 56.5 50.6 292.3

precond. Np linear it.
elapsed time [s]

precond. Au C1u CTu total (TNp)

IC(0) 1 19,767 4.8 6352.6 3171.4 3666.6 14611.8

Block IC(0) 16 15,678 0.2 914.0 323.2 302.2 4157.2

Block IC(1) 16 3,285 198.3 171.4 195.0 185.4 1084.4

Block IC(2) 16 3,283 311.6 164.6 327.2 327.5 1465.7

Block IC(3) 16 3,229 501.8 161.2 452.7 454.2 1902.9


